

Potential Uses for Woody **Biomass Resources**

Eric G. Eddings

Dept. of Chemical Engineering and Institute for Clean and Secure Energy University of Utah

&

Amaron Energy

Various Approaches for Use of Biomass in Energy Applications

- Fuel Production
 - Pyrolysis
 - Gasification
- Electricity or Steam Production
 - Biomass gasification
 - Fuel or commodity chemical production
 - steam, heat or power production
 - Co-firing w/fossil fuel (such as coal)
 - Direct co-firing
 - Pyrolysis or torrefaction followed by use of some or all pyrolysis products for direct combustion or co-firing
 - Direct biomass combustion
 - steam, heat or power production

Seeking Alternatives

BIOMASS PYROLYSIS

Biofuel Production from Woody Biomass Via Pyrolysis

Woody Biomass

Pyrolysis Products

Fuel Oil

Replacement

Electricity, Steam/

Heat Production

Fast Pyrolysis

Heat in absence of

oxygen. High heating

rates and lower

temperatures

maximizes oil

production.

Pyrolysis Gas

Production of Transportation Fuels Green Diesel, Gasoline & Jet Fuel

Soil amendment, CO2 sequestration, Direct use as fuel

Amaron Energy Process for Pyrolysis or Torrefaction of Biomass

- Traditional methods of fast pyrolysis for biomass are complex and expensive (fluidbed technology is common).
- Amaron Energy (start-up company) and the University of Utah have developed a precision controlled indirectly-fired rotary kiln that achieves typical fast pyrolysis oil yields
 - Simple, inexpensive process
 - Can operate in either pyrolysis or torrefaction mode
 - Ideal candidate for remote/mobile deployment
 - Currently operating prototype facility at ½ dry ton per day (tpd) scale.
 - In design phase of 10 tpd mobile demonstration unit

Variation of Product Yields with Reactor Temperature – Amaron Kiln Data

OF UTAH

Pinion-Juniper Feedstocks after Processing by Amaron Energy

Energy Densification: Use of Pyrolysis or Torrefaction

- Reduce costs for transporting biomass fuel by using remote pyrolysis systems to produce:
 - Higher energy density fuel
 - provides for more favorable transportation costs
- Higher energy density
 - Pyrolysis oil
 - Heating values 40-60% that of typical fuel oils, before upgrading
 - Can be fired as fuel oil substitute, or co-fired with fuel oil or coal
 - Biochar
 - Heating value ~same as coal
 - · Can be co-fired with coal
 - Torrefied biomass
 - heating value ~80% of coal
 - Can be co-fired with coal

Alternative Use of Biomass Pyrolysis: **Destruction of Surplus Propellant**

- U.S. Army Joint Munitions Command's (JMC) Resource Recovery and Disposition Account (RRDA)
 - contain millions of lbs of excess and obsolete propellants that require disposition
- FY 2012 Information:
 - Stockpile: ~556,000 tons
 - Cost: ~\$2000/ton
 - Disposition
 - 79% Recover, Recycle, Reuse
 - 19% Open Burn/Open Detonation
 - 2% Contained destruction (APE 1236M2 Hazardous Wa
- Would like to recover energy content of the latter two disposition options

Destruction of Surplus Propellant: Proposed Approach

- Tooele Army Depot teams with Amaron Energy to use biomass pyrolysis technology
 - Carefully feed mixtures of propellant and biomass in Amaron Kiln
 - Ratio of biomass to propellant monitored to provide appropriate thermal input
 - Propellants of interest contain own oxidizer and will burn without additional air injection
 - Under appropriate heating conditions, propellant will heat biomass to produce oil and biochar
 - On-base dunnage (wood waste) provide biomass
 - Currently landfilled at great expense
 - Additional on-site biomass (P-J, others)

BIOMASS GASIFICATION

Biofuel Production via Gasification

Primarily H₂ and CO, with some CO₂ and other gases

Biomass Gasifier (react with limited O₂)

Syngas Cleaning

Catalytic **Biofuel Synthesis**

Biomass Gasification Research Laboratory at the University of Utah

Biomass-fired Gasification

- Proposed units include fluidized-bed, entrained flow or fixed-bed units
- Availability of biomass resource will affect size
- Several pilot or demonstration units in operation or pending
- Challenges
 - Slagging/fouling on heat transfer surfaces due to high alkaline content of biomass
 - Mixing metering and distribution
 - Density, sizing, flowability
 - Tar formation and line pluggage
 - High pressure
 - Feeding, monitoring, cost

BIOMASS CO-FIRING WITH FOSSIL FUELS

Biomass Co-firing

- Has been tested in many full-scale utility boilers
- Similar challenges to biomass-fired units
 - Slagging/fouling on heat transfer surfaces due to high alkaline content of biomass
- Experience has indicated 10-15% biomass (on thermal input basis) is manageable from operational standpoint
- Provides opportunity to use biomass in largescale power production, without limitations of biomass availability

Experimental Test Campaign for Pinion/Juniper Use

- Study funded by U.S. Forest Service
- University of Utah pilot-scale test facility
 - operated to simulate operating conditions at the PacifiCorp Carbon Plant
- Fuel scenarios explored:
 - Baseline firing Utah coal
 - Co-firing scenarios with Pinion/Juniper
 - Raw wood 5 and 10% (based on thermal input)
 - Torrefied wood 5, 10 and 20%
 - Pyrolyzed wood (Biochar) 5, 10 and 20%

+

or

or

Summary of Co-Firing Campaign

- Results indicated
 - essentially no major differences in gaseous emissions
 - no difference in combustion efficiency
 - no significant deposition problems using 5-10% biomass
 - Some operational/feeding issues were observed when using 10% raw wood
 - Problems were reduced with torrefied wood
 - Problems were eliminated with biochar
- Biochar clearly a good candidate for co-firing
- Primary roadblock
 - economics for biomass use w/energy densification relative to coal
 - Will improve if pyrolysis products (e.g. oil) can be used for other purposes
 - Or penalties for CO₂ emissions, or requirements for renewable fuel use

ELECTRICITY OR STEAM HEAT PRODUCTION FROM BIOMASS

Biomass-fired Boilers

- Typically used for process steam or heat production, sometimes for power
 - Most often in 10-40 MWe range
 - Common units grate-fired (stoker) or fluidized-bed units
 - Size is typically limited due to availability of biomass
 - Challenges
 - Slagging/fouling on heat transfer surfaces due to high alkaline content of biomass
 - Mixing metering and distribution
 - Density, sizing, flowability

OF UTAH

CONCLUDING COMMENTS

Utah Pinion/Juniper Woody Biomass Utilization Team

- Amaron Energy torrefaction/pyrolysis technology for biomass
- UofU combustion, gasification, pyrolysis, oil upgrading
- USU agronomy, land use studies, project facilitators, oil upgrading, bio-plastics
- US Forest Service facilitators, funding, resource recovery
- BLM facilitators, resource recovery
- Washakie Renewable Energy marketing and utilization of oil
- Tooele Army Depot co-pyrolysis with waste propellant
- PacifiCorp Carbon Power Plant (Utah) utilization of modified biomass for power production

QUESTIONS?

Acknowledgement Utah Pinion/Juniper Woody Biomass Utilization Team Members

Eric Eddings, Ben Coates – University of Utah, Amaron Energy

Ralph Coates – Amaron Energy

Dallas Hanks - Utah State University, Utah Biomass Resource Group,

Amaron Energy

Darren McAvoy - Utah State University, Utah Biomass Resource

Group

Scott Bell – U.S. Forest Service

Aaron Wilkerson – Bureau of Land Management

Ray Torres – Tooele Army Depot

Jacob Kingston – Washakie Renewable Energy

